Homoclinic snaking of localized states in doubly diffusive convection
نویسندگان
چکیده
منابع مشابه
Spatially localized states in natural doubly diffusive convection
Numerical continuation is used to compute a multiplicity of stable spatially localized steady states in doubly diffusive convection in a vertical slot driven by imposed horizontal temperature and concentration gradients. The calculations focus on the so-called opposing case, in which the imposed horizontal thermal and solutal gradients are in balance. No-slip boundary conditions are used at the...
متن کاملLocalized pinning states in closed containers: Homoclinic snaking without bistability.
Binary mixtures with a negative separation ratio are known to exhibit time-independent spatially localized convection when heated from below. Numerical continuation of such states in a closed two-dimensional container with experimental boundary conditions and parameter values reveals the presence of a pinning region in Rayleigh number with multiple stable localized states but no bistability bet...
متن کاملHomoclinic snaking in bounded domains.
Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of ho...
متن کاملEckhaus instability and homoclinic snaking.
Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable, spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. This behavior is simplest to understand within the subcritical Swift-Hohenberg equation, but is also present in the subcritical regi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2011
ISSN: 1070-6631,1089-7666
DOI: 10.1063/1.3626405